Fairness and Machine Learning

Limitations and Opportunities

Paper Book

An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning.

Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility.

  • Introduces the technical and normative foundations of fairness in automated decision-making
  • Covers the formal and computational methods for characterizing and addressing problems
  • Provides a critical assessment of their intellectual foundations and practical utility
  • Features rich pedagogy and extensive instructor resources

Conditions of Use

CC BY-NC-SAThis book is licensed under a Creative Commons License (CC BY-NC-SA). You can download the ebook Fairness and Machine Learning for free.

Title
Fairness and Machine Learning
Subtitle
Limitations and Opportunities
Publisher
Author(s)
,
Published
2023-12-28
Edition
1
Format
eBook (pdf, epub, mobi)
Pages
320
Language
English
ISBN-10
0262048612
ISBN-13
9780262048613
License
CC BY-NC-SA
Book Homepage
Free eBook, Errata, Code, Solutions, etc.
Related Books