After deploying a Gradient Boosting model, you observe that its performance deteriorates after some time. What might be a potential step to address this?
- Re-train the model with additional data
- Increase the learning rate
- Reduce the model complexity
- Regularly update the model with new data
To address the performance deterioration of a deployed Gradient Boosting model, it's crucial to regularly update the model with new data (option D). Data drift is common, and updating the model ensures it adapts to the changing environment. While re-training with additional data (option A) may help, regularly updating the model with new data is more sustainable. Increasing the learning rate (option B) or reducing model complexity (option C) may not be effective in addressing performance deterioration over time.
Loading...
Related Quiz
- In the Data Science Life Cycle, which step involves defining the objectives and understanding the problem statement?
- You're working for a company that generates vast amounts of log data daily. The company wants to analyze this data to gain insights into user behavior and system performance. Which Big Data tool would be most suitable for storing and processing this data efficiently?
- Which layer type in a neural network is primarily responsible for feature extraction and spatial hierarchy?
- EDA often starts with a _______ to get a summary of the main characteristics of a dataset.
- What is the process of transforming raw data into a format that makes it suitable for modeling called?