A common method to combat the vanishing gradient problem in RNNs is to use _______.

  • Long Short-Term Memory (LSTM)
  • Decision Trees
  • K-Means Clustering
  • Principal Component Analysis
To address the vanishing gradient problem in RNNs, one common technique is to use Long Short-Term Memory (LSTM) networks. LSTMs are a type of RNN that helps mitigate the vanishing gradient problem by preserving and updating information over long sequences. LSTMs are designed to capture long-term dependencies and are more effective than traditional RNNs for tasks where data from distant time steps is important.
Add your answer
Loading...

Leave a comment

Your email address will not be published. Required fields are marked *