When regular Q-learning takes too much time to converge in a high-dimensional state space (e.g., autonomous vehicle parking), what modification could help it learn faster?

  • Deep Q-Networks (DQNs)
  • Policy Gradient Methods
  • Fitted Q-Iteration (FQI)
  • Temporal Difference (TD) Learning
Using Deep Q-Networks (DQNs) is a modification of Q-learning, which employs neural networks to handle high-dimensional state spaces efficiently. DQNs can approximate the Q-values, expediting learning in complex environments.
Add your answer
Loading...

Leave a comment

Your email address will not be published. Required fields are marked *