One common regularization technique involves adding a penalty to the loss function based on the magnitude of the coefficients, known as ________ regularization.
- L1 (Lasso)
- L2 (Ridge)
- Elastic Net
- Mean Squared Error
L2 (Ridge) regularization adds a penalty based on the sum of squared coefficients, helping to control the model's complexity and reduce overfitting.
Loading...
Related Quiz
- Imagine a scenario where an online learning platform wants to categorize its vast number of courses into different topics. The platform doesn't have predefined categories but wants the algorithm to determine them based on course content. This task would best be accomplished using which learning approach?
- A robot is navigating a maze. Initially, it often runs into walls or dead-ends, but over time it starts finding the exit more frequently. To achieve this, the robot likely emphasized ________ in the beginning and shifted towards ________ over time.
- In ________ learning, algorithms are trained on labeled data, where the answer key is provided.
- In SVM, the data points that are closest to the decision boundary and influence its orientation are called ______.
- Which of the following techniques is primarily used for dimensionality reduction in datasets with many features?