Why might a deep learning practitioner use regularization techniques on a model?

  • To make the model larger
  • To simplify the model
  • To prevent overfitting
  • To increase training speed
Deep learning practitioners use regularization techniques to 'prevent overfitting.' Overfitting is when a model learns noise in the training data, and regularization helps in making the model more generalized and robust to new data.
Add your answer
Loading...

Leave a comment

Your email address will not be published. Required fields are marked *