When encountering 'Out of Memory' errors in Hadoop, which configuration parameter is crucial to inspect?

  • mapreduce.map.java.opts
  • yarn.scheduler.maximum-allocation-mb
  • io.sort.mb
  • dfs.datanode.handler.count
When facing 'Out of Memory' errors in Hadoop, it's crucial to inspect the 'mapreduce.map.java.opts' configuration parameter. This parameter determines the Java options for map tasks and can be adjusted to allocate more memory, helping to address memory-related issues in MapReduce jobs.
Add your answer
Loading...

Leave a comment

Your email address will not be published. Required fields are marked *