Scenario: A financial institution wants to implement real-time fraud detection. Outline the key components and technologies you would recommend for building such a system.

  • Apache Beam for data processing, RabbitMQ for message queuing, Neural networks for fraud detection, Redis for caching
  • Apache Kafka for data ingestion, Apache Flink for stream processing, Machine learning models for fraud detection, Apache Cassandra for storing transaction data
  • Apache NiFi for data ingestion, Apache Storm for stream processing, Decision trees for fraud detection, MongoDB for storing transaction data
  • MySQL database for data storage, Apache Spark for batch processing, Rule-based systems for fraud detection, Elasticsearch for search and analytics
Implementing real-time fraud detection in a financial institution requires a robust combination of technologies. Apache Kafka ensures reliable data ingestion, while Apache Flink enables real-time stream processing for immediate fraud detection. Machine learning models trained on historical data can identify fraudulent patterns, with Apache Cassandra providing scalable storage for transaction data.
Add your answer
Loading...

Leave a comment

Your email address will not be published. Required fields are marked *