In a convolutional neural network (CNN), which type of layer is responsible for reducing the spatial dimensions of the input?
- Convolutional Layer
- Pooling Layer
- Fully Connected Layer
- Batch Normalization Layer
The Pooling Layer in a CNN is responsible for reducing the spatial dimensions of the input. This layer downsamples the feature maps, which helps in retaining important features and reducing computational complexity.
Which component of the Hadoop ecosystem is primarily used for distributed data storage?
- HDFS (Hadoop Distributed File System)
- Apache Spark
- MapReduce
- Hive
HDFS (Hadoop Distributed File System) is the primary component in the Hadoop ecosystem for distributed data storage. It is designed to store large files across multiple machines and provides data durability and fault tolerance.
Text data from social media platforms, such as tweets or Facebook posts, is an example of which type of data?
- Structured data
- Semi-structured data
- Unstructured data
- Binary data
Text data from social media platforms is typically unstructured. It doesn't have a fixed format or schema. It may include text, images, videos, and other content without a well-defined structure, making it unstructured data.
The _______ step in the Data Science Life Cycle is crucial for understanding how the final model will be integrated and used in the real world.
- Data Exploration
- Data Preprocessing
- Model Deployment
- Data Visualization
The "Model Deployment" step in the Data Science Life Cycle is essential for taking the data science model from development to production. It involves integrating the model into real-world applications, making it a crucial phase.
XML and JSON data formats, which can have a hierarchical structure, are examples of which type of data?
- Unstructured Data
- Semi-Structured Data
- Structured Data
- NoSQL Data
XML and JSON are examples of semi-structured data. Semi-structured data is characterized by a hierarchical structure and flexible schemas, making it a middle ground between structured and unstructured data. It is commonly used in various data exchange and storage scenarios.
A tech company wants to run A/B tests on two versions of a machine learning model. What approach can be used to ensure smooth routing of user requests to the correct model version?
- Randomly assign users to model versions
- Use a feature flag system
- Rely on user self-selection
- Use IP-based routing
To ensure smooth routing of user requests to the correct model version in A/B tests, a feature flag system (option B) is commonly used. This approach allows controlled and dynamic switching of users between model versions. Randomly assigning users (option A) may not provide the desired control. Relying on user self-selection (option C) may lead to biased results, and IP-based routing (option D) lacks the flexibility and control of a feature flag system for A/B testing.
For clustering similar types of customers based on their purchasing behavior, which type of learning would be most appropriate?
- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Semi-Supervised Learning
Unsupervised Learning is the most appropriate for clustering customers based on purchasing behavior. In unsupervised learning, the algorithm identifies patterns and groups data without any predefined labels, making it ideal for clustering tasks like this.
In MongoDB, which command is used to find documents within a collection?
- SEARCH
- SELECT
- FIND
- LOCATE
In MongoDB, the FIND command is used to query documents within a collection. It allows you to specify criteria to filter the documents you want to retrieve. MongoDB uses a flexible and powerful query language to find data in collections, making it well-suited for NoSQL document-based data storage.
Ensemble methods like Random Forest and Gradient Boosting work by combining multiple _______ to improve overall performance.
- Features
- Models
- Datasets
- Metrics
Ensemble methods, like Random Forest and Gradient Boosting, combine multiple models (decision trees in the case of Random Forest) to improve overall predictive performance. These models are trained independently and then aggregated to make predictions. The combination of models is what enhances the accuracy and robustness of the ensemble.
The process of transforming skewed data into a more Gaussian-like distribution is known as _______.
- Normalization
- Standardization
- Imputation
- Resampling
The process of transforming skewed data into a more Gaussian-like distribution is called "standardization." It involves shifting the data's distribution to have a mean of 0 and a standard deviation of 1, making it more amenable to certain statistical techniques.