Using real-world data case studies, this innovative and accessible textbook introduces an actionable framework for conducting trustworthy data science.
Most textbooks present data science as a linear analytic process involving a set of statistical and computational techniques without accounting for the challenges intrinsic to real-world applications. Veridical Data Science, by contrast, embraces the reality that most projects begin with an ambiguous domain question and messy data; it acknowledges that datasets are mere approximations of reality while analyses are mental constructs.
Bin Yu and Rebecca Barter employ the innovative Predictability, Computability, and Stability (PCS) framework to assess the trustworthiness and relevance of data-driven results relative to three sources of uncertainty that arise throughout the data science life cycle: the human decisions and judgment calls made during data collection, cleaning, and modeling. By providing real-world data case studies, intuitive explanations of common statistical and machine learning techniques, and supplementary R and Python code, Veridical Data Science offers a clear and actionable guide for conducting responsible data science. Requiring little background knowledge, this lucid, self-contained textbook provides a solid foundation and principled framework for future study of advanced methods in machine learning, statistics, and data science.
- Presents the Predictability, Computability, and Stability (PCS) methodology for producing trustworthy data-driven results
- Teaches how a data science project should be conducted from beginning to end, including extensive discussion of the data scientist's decision-making process
- Cultivates critical thinking throughout the entire data science life cycle
- Provides practical examples and illuminating case studies of real-world data analysis problems with associated code, exercises, and solutions
- Suitable for advanced undergraduate and graduate students, domain scientists, and practitioners
- Title
- Veridical Data Science
- Subtitle
- The Practice of Responsible Data Analysis and Decision Making
- Publisher
- The MIT Press
- Author(s)
- Bin Yu, Rebecca L. Barter
- Published
- 2024-10-15
- Edition
- 1
- Format
- eBook (pdf, epub, mobi)
- Pages
- 526
- Language
- English
- ISBN-10
- 0262049198
- ISBN-13
- 9780262049191
- License
- Read online for free
- Book Homepage
- Free eBook, Errata, Code, Solutions, etc.
Preface Acknowledgments Part I: An Introduction to Veridical Data Science 1 An Introduction to Veridical Data Science 2 The Data Science Life Cycle 3 Setting Up Your Data Science Project Part II: Preparing, Exploring, and Describing Data 4 Data Preparation 5 Exploratory Data Analysis 6 Principal Component Analysis 7 Clustering Part III: Prediction 8 An Introduction to Prediction Problems 9 Continuous Responses and Least Squares 10 Extending the Least Squares Algorithm 11 Binary Responses and Logistic Regression 12 Decision Trees and the Random Forest Algorithm 13 Producing the Final Prediction Results 14 Conclusion Answers to True or False Exercises